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Abstract:

The main purpose of this study is to evaluate the potential of simulating the profiles of the mean velocity and turbulence
intensities for the steep open channel flows over a smooth boundary using artificial neural networks. In a laboratory flume,
turbulent flow conditions were measured using a fibre-optic laser doppler velocimeter (FLDV). One thousand and sixty-four
data sets were collected for different slopes and aspect ratios at different locations. These data sets were randomly split into
two subsets, i.e. training and validation sets. The multi-layer functional link network (MFLN) was used to construct the
simulation model based on the training data. The constructed MFLN models can almost perfectly simulate the velocity profile
and turbulence intensity. The values of correlation coefficient (�) are close to one and the values of root mean square error
(RMSE) are close to zero in all conditions. The results demonstrate that the MFLN can precisely simulate the velocity profiles,
while the log law and Reynolds stress model (RSM) are less effective when used to simulate the velocity profiles close to the
side wall. The simulated longitudinal turbulence intensities yielded by the MFLN were also fairly consistent with the measured
data, while the simulated vertical turbulence intensities by the RSM were not consistent with the measured data. Copyright 
2007 John Wiley & Sons, Ltd.
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INTRODUCTION

Over the past decades, numerous researchers have
attempted to construct the velocity profile and understand
the structure of the turbulent in open channel flow. Both
laboratory experiments and field studies have used hot-
film anemometer, laser-Doppler anemometer, particle-
tracking velocimeter (Nezu and Nakayama, 1997), and
other anemometers (Rolland and Lemmin, 1997; Tariq
and Masood, 2001; Shi and Hughes, 2002). Theses stud-
ies identified qualitative patterns of the turbulence in
open channel flow and supported quantitative descrip-
tion turbulence regimes. This has resulted in a substantial
increase in the understanding of form and process inter-
relationships in channel geomorphology, including appli-
cations in the dynamic analysis of channels and sediment
transport. Indeed, in recent years a considerable increase
in the use of a process-based numerical approach to
simulate hydraulic patterns in complex natural channels
has been witnessed. Advances have included techniques
to describe two- and three-dimensional velocity pro-
files and turbulence-driven secondary motions (Thomas
and Williams, 1999; Czernuszenko and Rylov, 2002).
Many researchers have emphasized the need for improved
laboratory and field studies. There is also a need for
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the development of alternative methodologies to better
address the simulation of complex conditions in natural
channels (Lane and Richards, 1998; Booker, 2003). The
expectation is that better data from new instruments can
enhance the development of the velocity profile models
and turbulence simulation. The development of process-
based simulation models has only just begun. Many non-
linear complex characteristics of flow conditions, espe-
cially turbulent flows, still cannot be satisfactory simu-
lated. For example, sophisticated formulas/models such
as the log-law and Reynolds stress model (RSM) cannot
well describe the velocity profile near the side wall, water
surface and channel bed (Lu et al., 2003).

The artificial neural network (ANN) is now gaining
interest from researchers in many disciplines of science
and engineering. ANNs have also provided promising
results in the field of hydrology and water resources
such as streamflow prediction (Chang and Chen, 2003;
Chiang et al., 2004), rainfall-runoff modelling (Tokar
and Johnson, 1999; Lin and Chen, 2004), and reservoir
operation (Chang and Chang, 2001). Although some
attempts have been made to apply ANNs to problems
in fluid dynamics (Milano and Koumoutsakos 2002;
Hocevar et al., 2004), this method is rarely used in open
channel flow simulation (Omid et al., 2005).

A previous study had demonstrated that the ANN
can nicely fit the velocity profiles of a relatively flat
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�slope D 0Ð1%� open channel flow and can precisely pre-
dict the discharges for the investigated conditions (Yang
and Chang, 2005). The main objective of this work is to
further evaluate the potential of ANNs for simulating the
profiles of the mean velocity and turbulence intensities
of the steep open channel flows over a smooth boundary.
Simulations will provide profiles of the mean velocity
and turbulence intensities in the longitudinal and vertical
directions using a neural network trained to data collected
in a laboratory flume using a fibre-optic laser doppler
velocimeter (FLDV). The simulation model is based on
a multi-layer functional link neural network (MFLN). The
modelling processes and performance of the MFLN are
described and compared with the corresponding experi-
mental data and two familiar semi-empirical models.

VELOCITY PROFILE FORMULAS AND RSM

The velocity profiles of fully developed turbulent open
channel flow are of great interest to engineers, particu-
larly in the estimation of erosion and sediment transport
in alluvial channels. A recent research result has also
represented that the velocity profile is the driver of phys-
ical habitat quality for aquatic species (Booker, 2003).
Due to the practical importance of the problem, many
studies have been conducted to seek the velocity pro-
files in turbulent flow, experimentally using pitot tubes,
hot film anemometer (Cardoso et al., 1989) or a laser-
doppler anemometer (Kirkgöz and Ardiclioglu, 1997; Lu
et al., 2003). Various semi-empirical models have then
been provided to simulate the velocity profile of fully
developed turbulent channel flow (Sarma et al., 1983; Hu
and Hui, 1995). One of the most popular velocity distri-
bution models is the log-law presented by von Kármán
(1930) and Prandtl (1932):

u

UŁ
D 1

�
ln

UŁy

�
C C �1�

where � is the von Kármán constant; C is a constant;
UŁ is shear velocity (D p

�0/�); �0 is bed shear stress;
� is mass density and � is the kinematic viscosity.
Equation (1) was used to simulate the velocity profiles
from FLDV measurements and provide a data set to
compare with the results obtained from simulations
using ANN.

RSMs are the basis for most traditional turbulence
models. The RSM is not restricted by the Boussinesq
assumption relating turbulent stresses to rates of mean
strain. In principle, RSM is a high level scheme and is
used to model the Reynolds stress transport equation.
RSM discards the eddy viscosity and velocity gradient
approach and the Reynolds stresses (��uiuj) are com-
puted directly by the following differential equation:

∂

∂t
��uiuj� C Cij D DT

ij C DL
ij C Pij C ϕij C εij �2�

where Cij, DT
ij, DL

ij, Pij, ϕij and εij are the convection,
turbulent diffusion, molecular diffusion, stress produc-
tion, pressure strain and dissipation terms, respectively.

The main disadvantage of RSM is computational com-
plexity and corresponding calculation time. To explore
the capabilities and limitations of the existing turbulence
model, the sophisticated RSM was chosen to simulate the
fully developed turbulent open-channel flow by Lu et al.
(2003), and the computed mean velocities and turbulence
statistical quantities from this model was compared with
the MFLN.

In this study, the results of Lu et al. (2003) are quoted
to carry on the comparison and briefly describe how the
RSM is developed. The computational domain of the flow
was discrete with 60 ð 10 ð 36 grid points. The initial
velocities at the inlet section were set to be the measured
mean velocity. For the pressures at the outlet section, the
pressure at the water surface was assumed to be zero, the
effective pressure below the water surface was assumed
to be hydrostatic. The initial turbulence intensity was
set to be 3%. The turbulence length scale was set to
be 0Ð01 m. The two layer zonal model was chosen for
the wall boundaries and the volume of fluid method was
used at the free-surface.

MULTI-LAYER FUNCTIONAL LINK NETWORK
(MFLN)

Neural networks were inspired by biological neuron
processing to perform brain-like computation through
massively simple connective artificial neurons. After
McCulloch and Pitts (1943) established the first neural
network, many neural networks, such as the multi-layer
perceptrons neural network, radial basis function neural
network, self-organizing network, and fuzzy neural net-
work were developed to solve different problems (Ham
and Kostanic, 2001). Multi-layer perceptrons neural net-
work is the most common type of neural network and
has been successfully applied for adaptive identification
of a variety of non-linear processes. In this network, the
inputs to a node are linearly weighted before the sum is
passed to the activation function of the hidden layer that
gives the network its non-linear approximation ability.
This process, however, might create problems in training
the network weights, as non-linear learning rules must
be used, the learning rate is often slow and local min-
ima may cause problems (Chen and Billings, 1992). One
way to avoid non-linear training is to use MFLNs. In
these networks, a non-linear functional expansion of the
network inputs is initially performed and the resulting
terms are combined linearly. The structure obtained has
a good non-linear approximation capability, and the esti-
mation of network weights is linear. Among them, the
MFLN has been used as a powerful pattern recognition
tool (Yamany et al., 1997), applied in modelling (Patra
and van den Bos, 2000), and process control (Costa et al.,
2002).

Figure 1 shows the general structure of a MFLN with
an error back-propagation algorithm. It includes input
(including inputs transformation), hidden, and output
layers. Each layer includes several neurons that are
the fundamental building blocks for the network. The
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Figure 1. MFLN architecture and learning process (# replace u with u0 or v0 for simulating longitudinal or vertical turbulence intensities, respectively)

input layer receives the input vector. The hidden layer
represents the interaction of the input variables. The
network may have many or no hidden layers depending
on the problem’s degree of complexity. The output layer
provides transportation for a result to output vectors. The
learning process goes from input layer to hidden layer,
and then to output layer. Learning involves modifying
the connection weights and biases until the network
is capable of reproducing the target output for the
respective input. Learning takes place in an iterative
fashion by the back propagation algorithm. When MFLN
is implemented, one would have to decide on the
number of neurons in the hidden layer that leads to
the best results. MFLN is a variation of the basic
backpropagation network to improve the ability to form
complex relationships between inputs and outputs. It
provides information to the network by adding inputs
that are functions (ex. normalization) of the inputs that
handle non-linearly non-separable classes. Therefore the
dimensions of the inputs increase by using non-linear
combinations of the input features. Generally, simple
normalization, exponential and logarithmic terms may
be appropriate for transforming inputs to the network
(Tang et al., 2003) The transforming inputs are able
to enhance overall effect of mapping the input into a
large space. MFLN usually can perform better than the
multi-layer network and has a distinct advantage because
of easier learning in the model MFLNs are better at
approximating functions that contain both linear and

non-linear terms. But the computational complexity of
network is increased as weights corresponding to direct
interconnection between the input and output neurons are
added.

MFLN is a feedforward network that also uses as stan-
dard a backpropagation training algorithm. Backpropaga-
tion adjusts the weights in a feedforward network, with
differentiable activation function units, to learn (fit) a
training set of input–output patterns. The standard back-
propagation algorithm for training the network is based
on the gradient-descent search algorithm that computes
the first derivative of an objective (cost) function with
respect to the parameters (weights) of the network. A
supervised learning rule for adjusting the weights of the
network follows the error function being minimized. By
using the Delta rule directly, the targets for the output
units are explicitly specified for updating the wlj weights

wlj D wnew
lj � wc

lj D �0�dl � yl�f
0
0�netl�xl �3�

netl D
∑

wljxl �4�

where wnew
lj and wc

lj are the updated and current weights;
dl and yl are the lth component of target and output
unit; �0 is the learning rate; f

0
0 is the derivative of the

non-linear function f0 with respect to net; net is the
weighted sum for the lth output unit. Learning takes
place in an iterative fashion: each cycle consists of a
forward propagation step with the weights being modified
by the method to reduce the cost function. The standard
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backpropagation algorithm can be found in Ham and
Kostanic (2001).

EXPERIMENTAL EQUIPMENT AND PROCEDURE

A schematic diagram of the experimental equipment
is shown in Figure 2. The data were collected in a
recirculating flume 0Ð25 m wide, 0Ð25 m depth and 12 m
long. The flow can be varied from 0 to 0Ð03 m3 s�1 by
using two pumps and a valve control on the discharge
line. The slope of the glass channel can be adjusted from
0 to 10% by screw jacks. A settling honeycomb was
installed at the entrance of the channel to prevent large-
scale turbulence and achieve uniform entrance flow.

The average depth of flow was determined by observ-
ing the difference in elevation between the water surface

and the channel bed with an ultrasonic water level sensor,
which was mounted on a four-wheeled carriage travel-
ling on rails of the flume. The water level was measured
every 0Ð5 m along the centreline of the flume. Only those
depths observed in the part of the flume having uniform
slope were used to establish the average depth.

The velocities were measured with a two-component
(two-colour, four beams) FLDV operated in the
backward-scattering system. To understand the variation
of the velocity close to the channel bed, more
observations were made. The mean velocity of flow in the
flume �Um� was determined from the observed discharge
and water depth by use of the continuity equation,

Um D Q

HB
�8�

flow direction

Z=0.0(channel center)

Z=0.2

Z=0.4

Z=0.6

Z=0.8

25cm
2.5cm
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Figure 2. Set-up of experimental equipment and velocity profile measuring locations
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Table I. Summary of available data

Run S (%) H (mm) T (°C) Q �m3 s�1� Um�m s�1� UŁ�m s�1� B/H Re Fr

S1H22 1 22 27 0Ð0049 0Ð891 0Ð0428 11Ð36 19 475 1Ð92
S1H30 1 30 28 0Ð008 1Ð067 0Ð0487 8Ð33 30 824 1Ð97
S1H45 1 45 27 0Ð0139 1Ð236 0Ð0570 5Ð56 47 771 1Ð86
S1H54 1 54 27 0Ð0178 1Ð319 0Ð0608 4Ð63 58 098 1Ð81
S2H22 2 22 25 0Ð0069 1Ð255 0Ð0606 11Ð36 26 282 2Ð70
S2H30 2 30 26 0Ð0108 1Ð440 0Ð0689 8Ð33 39 843 2Ð65
S2H54 2 54 25Ð5 0Ð0263 1Ð948 0Ð0862 4Ð63 82 352 2Ð64

where Q is discharge, H is water depth, B is channel
width equalling to 0Ð25 m. For measuring the fully
developed turbulent flow, velocity profiles were measured
8Ð2 m from the flume entrance where the water depth of
the test section of flume was uniform and fully developed
(Yang, 1998). Shear velocities are defined as:

UŁ D
√

�0/� D √
gRS �9�

where g is acceleration due to gravity, R is hydraulic
radius and S is channel bed slope.

The aspect ratio, ratio of width to depth, varied from
4Ð63 to 11Ð36. Channel bed slopes of 1 and 2% were
selected. The Reynolds number (Re D UmR/�) varied
approximately from 20 000 to 80 000, and the Froude
number (Fr D Um/

p
gH) ranged from 1Ð81 to 2Ð70. The

velocity profile data were taken in five verticals with
different Z values (Z D 0 and 1 represent the channel
centreline and the side wall, respectively). The details of
the experimental conditions are given in Table I.

Flows with different channel bed slope and aspect ratio
were adopted in this experimental study to investigate
the characteristics of the steep open channel flow. It was
found that the maximum velocity often occurred not at
the free surface. The experimental observations indicated
that the depression of the point of maximum velocity
increased with a decrease of the aspect ratio, an increase
of the bed slope, or an increase of the Z value (closer to
the side wall). It appears that the flow condition can be
influenced by the values of S, B/H and Z.

MODELLING RESULTS

Mean velocity

As stated earlier, one of the primary objectives of
the present study is to evaluate the potential of neural
networks to simulate the velocity profiles from a readily
available experiment data set. The mean velocity of the
turbulent open channel flow over a smooth boundary is
a function of S, B/H, Z and y/H. Therefore, the vertical
velocity can be expressed as:

u D f�S, B/H, Z, y/H� �10�

where f() represents the non-linear function.
There are 35 available vertical velocity profiles, and

each vertical profile includes 22 to 34 data points. The
total number of data points is 1064. To build a MFLN for

simulating the velocity profiles, this quantity of data was
sufficient. It is common practice to split the available
data set into two subsets: training and validation sets.
In MFLN, it typically begins with a training sample
and uses the backpropagation algorithm to adjust the
synaptic weights of multi-layer perceptrons by using as
many of the training examples as possible, so that the
trained neural network will generalize the input–output
mapping. A network is said to generalize well when
the input–output mapping computed by the network is
correct for validation data that was never used in training
the network. Accordingly, 25 vertical velocity profiles
with 756 velocities were chosen to train the network, and
the remaining 10 vertical velocity profiles (runs S1H45
and S2H30) with 308 velocities were used for validation.
This subdivision into training and validation data sets is
to assess the generalization of the properties of the trained
network.

As shown in Figure 1, the input layer includes 12
variables, and the output layer has only one node
representing the velocity value in the specific location
of y/H on the vertical. The eight neurons in the hidden
layer were determined through a trial and error process
based on the best fitness of the training data sets. The
learning rate could affect the convergence speed of the
MFLN. The learning rate was set to unity in the beginning
and multiplying it by a number, which was depending
upon the error function increasing or decreasing during
the training process. The sigmoid function was set as the
activation function. After a number of trials, the values
of the network’s weights range from 2Ð05 to �5Ð78 and
the biases vary from 1Ð17 to �1Ð48 were obtained. The
network training was continued until the error goal was
reached and/or stopped after 5400 iterations. An iteration
is one complete pass through a set of inputs and target
patterns while training the network.

The root mean square error (RMSE), which can be
used for an assessment of the performance, is given by:

RMSE D
√∑

�uobs � usim�2

n
�11�

where uobs and usim are observed and simulated velocities
and n is the number of observations. The correlation
coefficient (�) is given by:

� D
∑

�uobs � uobs�
∑

�usim � usim�√∑
�uobs � uobs�2

∑
�usim � usim�2

�12�
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Figure 3. Degree of convergence for the training

Table II. MFLN results

Subset � RMSE �m s�1�

Training 0Ð998 0Ð024
Validation 0Ð991 0Ð031

where uobs and usim represent the mean of observed
and simulated velocities, respectively. The error graph
for the neural network model during training is shown
in Figure 3. It shows that the network has converged
after about 4000 iterations and remains fairly stable
following convergence. Table II gives the value of the
� and RMSE of the training and validation sets. The �
values are close to unity and the RMSEs are quite small.
Figure 4 shows the simulated results for both training and
verification cases, respectively. It appears that all the data
points (observation versus model simulation) nicely fall
onto the line of agreement. The results in both Table II
and Figure 4 indicate that MFLN can simulate the
velocity profile accurately. For the purpose of comparison
(reference), the velocities of profiles simulated by RSM
presented by Lu et al. (2003) and log-law are also
provided. The measured mean velocity profiles exhibit
a clear retardation effect near the free surface, a feature
absent from the numerical simulations (ex. log-law and
RSM). Figures 5 and 6 provide a visual impression of the
good performance of the MFLN. Table III summarizes
the results and shows the performance of MFLN, log-
law, and RSM method for Z D 0Ð8 (near side wall, with
significant depression of the point of maximum velocity).
It appears that the � values are close to one and the values
of RMSE are very small (close to zero) in all conditions
modelled by the MFLN. The results demonstrate that
the MFLN can precisely simulate the velocity profiles
while the log-law and RSM are less effective when
used to simulate the velocity profiles close to the side
wall.

Turbulence intensities

The analysis and simulation method for the longitu-
dinal and vertical turbulence intensities using MFLN is
identical to that for the mean flow velocity. The struc-
ture of MFLN is similar to Figure 1. However, the mean
velocity u is replaced with u0 or v0 for simulating the lon-
gitudinal or vertical turbulence intensities, respectively.
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Figure 4. The observation �uFLDV� versus simulation �uMFLN� results:
(a) training set; (b) validation set

Four input factors (S, B/H, Z and y/H ) are used as input
vector, and the output layer has only one node represent-
ing the longitudinal turbulence intensity (u0) or vertical
turbulence intensity (v0) in the specific location of y/H
on the vertical. Twelve neurons in the hidden layer are
determined through a trail and error process. The num-
ber of neurons in this case is larger than the previous
mean-flow case because the physical process influenc-
ing the turbulence intensities are more complex near the
channel bed. As with the previous case, each set of turbu-
lence intensity data is divided into training and validation
subsets. The initial learning rate is set to unity. The net-
work training is continued until either the goal of the
RMSE is reached or the number of iterations exceeds
5400.

Figures 7 and 8 show the comparisons of the observed
and simulated longitudinal dimensionless turbulence
intensities �u0/UŁ� for runs S1H54 and S2H54, respec-
tively. The simulated longitudinal turbulence intensities
yielded by the MFLN were fairly consistent with the
measured data (FLDV), while the simulated vertical
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Figure 5. Comparisons of observed and simulated velocity profiles by
MFLN and RSM for run S1H54

turbulence intensities by the RSM were not consistent
with the measured data. The results indicate that the
FLDV data points are simulated better by MFLN than
RSM. The comparisons of the observed and simulated
vertical dimensionless turbulence intensities �v0/UŁ� for
runs S1H54 and S2H54 are given in Figures 9 and 10.
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Figure 6. Comparisons of observed and simulated velocity profiles by
MFLN and RSM for run S2H54

Again, the results also demonstrate that the MFLN can
better simulate the experimental data when compared to
RSM, especially near the water surface, channel bed and
the side wall (e.g. Z D 0Ð8). From these observations it
was found that both the longitudinal and vertical turbu-
lence intensities simulated from MFLN were consistent

Table III. Summary of results (Z D 0.8)

Run Method Maximum u �m s�1� Minimum u �m s�1� RMSE �m s�1� �

S1H22 FLDV 0Ð884 0Ð539 0Ð000 1Ð000
MFLN 0Ð892 0Ð560 0Ð007 0Ð998
log-law 0Ð985 0Ð580 0Ð080 0Ð985
RSM 0Ð769 0Ð317 0Ð104 0Ð934

S1H54 FLDV 1Ð33 0Ð730 0Ð000 1Ð000
MFLN 1Ð327 0Ð797 0Ð029 0Ð990
log-law 1Ð589 0Ð877 0Ð236 0Ð942
RSM 1Ð371 0Ð364 0Ð139 0Ð926

S2H22 FLDV 1Ð245 0Ð775 0Ð000 1Ð000
MFLN 1Ð224 0Ð781 0Ð019 0Ð998
log-law 1Ð441 0Ð867 0Ð169 0Ð970
RSM 1Ð233 0Ð637 0Ð050 0Ð968

S2H54 FLDV 1Ð823 0Ð963 0Ð000 1Ð000
MFLN 1Ð791 1Ð030 0Ð030 0Ð994
log-law 2Ð317 1Ð260 0Ð438 0Ð975
RSM 1Ð876 0Ð258 0Ð279 0Ð956

Note: � D 0Ð4 and C D 5Ð5 were given for log-law formula.
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with that for FLDV measurements under steep slope con-
ditions (i.e. 1 and 2%).

The results obtained in this study give nice evidence
that the constructed neural network models can be used
for estimating or generating the profiles of mean velocity
and turbulence intensities for turbulent open channel
flows over a smooth boundary.

CONCLUSIONS

The ANN technique for modelling the characteristics of
turbulent flows in a steep open-channel with a smooth
boundary, for different channel bed slopes and aspect
ratios ranging from 4Ð63 to 11Ð36 measured by a FLDV,
is presented. Due to the complexity and non-linearity of
the profiles for the mean velocity and turbulence inten-
sities, there are no simple relationships or functions that
can effectively describe and/or simulate these profiles,
especially near the boundaries (including water surface,
side walls and channel bed). In this study, the intent has
been to investigate the potential of neural networks to
simulate the experimental data measuring profiles and
turbulence.

It has been confirmed that the flow characteristics,
including the mean velocity and turbulence intensities,
are a function of the channel bed slope, aspect ratio,
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Figure 8. Comparisons of observed and simulated longitudinal dimen-
sionless turbulence intensities by MFLN and RSM for run S2H54

and location, for turbulent open channel flows over a
smooth boundary. Therefore, four factors—S, B/H, Z,
and y/H—are used as input vectors, while the corre-
sponding value of mean velocity (or turbulence inten-
sity) is used as the desired output. The data set was
split into two-subsets, a training set and an independent
validation set. MFLN is used to construct the simula-
tion model based on the training set (a total of 756
input–output patterns). The results show that the con-
structed MFLN models do agree well with the velocity
profile or turbulence intensity for the training and val-
idation patterns. The MFLN can precisely simulate the
turbulent flow characteristics for the given input condi-
tions. The � values are close to one and the values of
RMSE are close to zero in all conditions. The constructed
neural network model can be embedded as a module
for estimating or generating the profiles of mean veloc-
ity and turbulence intensities for turbulent open channel
flows over a smooth boundary. The model can be used
as a powerful tool to simulate the flow profiles for sim-
ilar flow conditions and can also be used to correct the
flow profiles with missing data. Furthermore, because the
velocity profiles could be almost perfectly simulated by
the MFLN in the given conditions, an integral method
could be used to obtain the corresponding discharges cor-
rectly.
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Figure 9. Comparisons of observed and simulated vertical dimensionless
turbulence intensities by MFLN and RSM for run S1H54
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Ergrbnisse der Aerodynamischen Versuchsanstalt zu Göttingen 4:
18–29.

Rolland T, Lemmin U. 1997. A two-component acoustic velocity profiler
for use in turbulent open-channel flow. Journal of Hydrology Research
3(4): 545–561.

Sarma KVN, Lakshminaraynan P, Rao NSL. 1983. Velocity distribution
in smooth rectangular open channels. Journal of Hydrologic
Engineering, ASCE 109(2): 270–289.

Shi Z, Hughes JMR. 2002. Laboratory flume studies of microflow
environments of aquatic plants. Hydrological Processes 16(16):
3279–3289.

Tang CW, Chen HJ, Yen T. 2003. Modeling confinement efficiency of
reinforced concrete columns with rectilinear transverse steel using

Copyright  2007 John Wiley & Sons, Ltd. Hydrol. Process. 22, 265–274 (2008)
DOI: 10.1002/hyp



274 F.-J. CHANG ET AL.

artificial neural networks. Journal of Structural Engineering, ASCE
129(6): 775–783.

Tariq AUR, Masood M. 2001. Deflecting velocity rod for flow
measurements in small channels. Journal of Irrigation and Drainage
Engineering 127(5): 311–317.

Thomas TG, Williams JR. 1999. Large-eddy simulation of flow in a
rectangular open-channel. Journal of IAHR 37(3): 345–361.

Tokar AS, Johnson PA. 1999. Rainfall-runoff modeling using artificial
neural networks. Journal of Hydrologic Engineering, ASCE 4(3):
232–239.
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